

Revision History:

Revision 1.0 (Jul. 06, 2007) - Original

PSRAM

16-Mbit (1M x 16)

Pseudo Static RAM

Features

Features

•Wide voltage range: 1.7V-1.95V

Access Time: 70 nsUltra-low active power

Typical active current: 3 mA @ f = 1 MHzTypical active current: 18 mA @ f = fmax

•Ultra low standby power

•Automatic power-down when deselected

CMOS for optimum speed/power

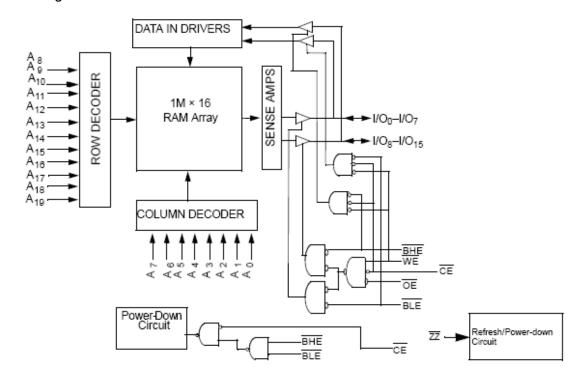
Deep Sleep Mode

•Available in Lead-Free 48-ball BGA Package

•Operating Temperature: -40°C to +85°C

Functional Description[1]

The M24D16161ZA is a high-performance CMOS Pseudo Static RAM organized as 1M words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for portable applications such as cellular telephones. The device can be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH or both $\overline{\text{BHE}}$ and $\overline{\text{BLE}}$ are HIGH). The input/output pins (I/O0through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$ HIGH), outputs

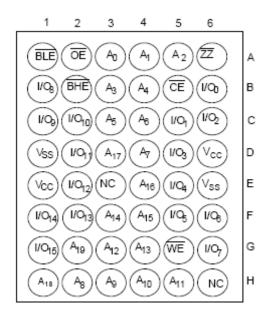

are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

To write to the device, take Chip Enable ($\overline{\text{CE}}$ LOW) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₉).

If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₉).To read from the device, take Chip Enables (\overline{CE} LOW) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. Refer to the truth table for a complete description of read and write modes.

Deep Sleep Mode is enabled by driving \overline{ZZ} LOW. See the Truth Table for a complete description of Read, Write, and Deep Sleep mode.

Logic Block Diagram



Publication Date: Jul. 2007 Revision: 1.0 2/15

Pin Configuration[2, 3]

48-ball VFBGA Top View

Product Portfolio

							Power D	Dissipation	n	
Product	V _{CC} Range (V)			Speed(ns)	Operating I _{CC} (mA)			Standby L (uA)		
Floduct				Speed(IIS)	f = 1MHz		$f = f_N$	ЛАХ	Standby I _{SB2} (µA)	
	Min.	Тур.	Max.		Typ.[4]	Max.	Typ.[4]	Max.	Typ. [4]	Max.
M24D16161ZA	1.7	1.8	1.95	70	3	5	18	20	55	70

Low-Power Modes

At power-up, all four sections of the die are activated and the PSRAM enters into its default state of full memory size and refresh space. This device provides four different Low-Power Modes

- 1.Reduced Memory Size Operation
- 2. Partial Array Refresh
- 3.Deep Sleep Mode
- 4. Temperature Controlled Refresh

Reduced Memory Size Operation

In this mode, the 16 Mb PSRAM can be operated as a 12-Mbit,8-Mbit or a 4-Mbit memory block. Please refer to "Variable Address Space Register (VAR)" on page4 for the protocol to turn on/off sections of the memory. The device remains in RMS mode until changes to the Variable Address Space register are made to revert back to a complete 16-Mbit PSRAM.

Partial Array Refresh

The Partial Array Refresh mode allows customers to turn off sections of the memory block in the Stand-by mode (with \overline{ZZ} tied low) to reduce standby current. In this mode the PSRAM will only refresh certain portions of the memory in the

Stand-By Mode, as configured by the user through the settings in the Variable Address Register.

Once \overline{ZZ} returns high in this mode, the PSRAM goes back too perating in full address refresh. Please refer to "Variable Address Space Register (VAR)" on page4 for the protocol to turn off sections of the memory in Stand-By mode. If the VAR register is not updated after the power up, the PSRAM will be in its default state. In the default state the whole memory array will be refreshed in the Stand-By Mode. The 16-Mbit is divided into four 4-Mbit sections allowing certain sections to be active (i.e., refreshed).

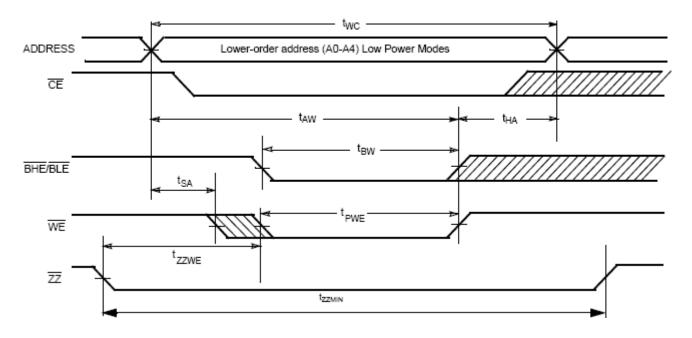
Deep Sleep Mode

In this mode, the data integrity in the PSRAM is not guaranteed. This mode can be used to lower the power consumption of the PSRAM in an application. This mode can be enabled and disabled through VAR similar to the RMS and

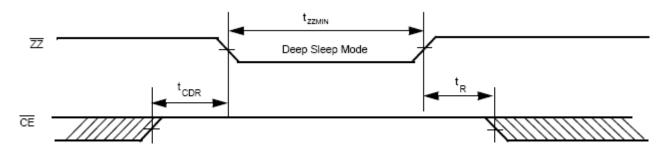
PAR mode. Deep Sleep Mode is activated by driving ZZ LOW. The device stays in the deep sleep mode until $\overline{\rm ZZ}$ is driven HIGH.

Notes:

2.Ball H6, E3 can be used to upgrade to 32M and 64M density respectively.


3.NC "no connect" - not connected internally to the die.

4.Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$. Tested initially and after any design changes that may affect the parameter.


Publication Date: Jul. 2007 Revision: 1.0 3/15

Variable Address Mode Register (VAR) Update[5, 6]

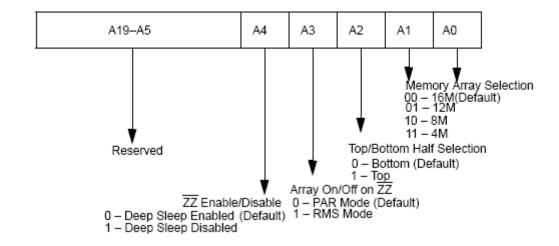
Deep Sleep Mode—Entry/Exit [7]

VAR Update and Deep Sleep Mode Timing[5, 6]

Parameter	Description	Min.	Max.	Unit
t _{ZZWE}	ZZ LOW to Write Start		1	μs
t _{CDR}	Chip deselect to ZZ LOW	0		ns
t _R [7]	Operation Recovery Time (Deep Sleep Mode only)	200		μs
t _{ZZMIN}	Deep Sleep Mode Time	8		μs

Notes:

5. $\overline{\text{OE}}$ and the data pins are in a don't care state while the device is in variable address mode.

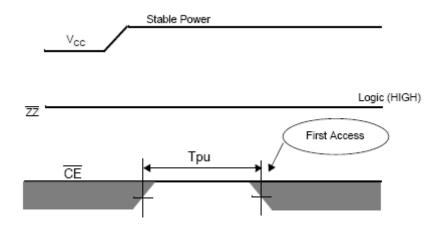

6.All other timing parameters are as shown in the data sheets.

7.t_R applies only in the deep sleep mode.

Publication Date: Jul. 2007 Revision: 1.0 4/15

Variable Address Space Register (VAR)

Variable Address Space—Address Patterns


	Partial Array Refresh Mode (A3 = 0, A4 = 1)							
A2	A1,A0	Refresh Section	Address	Size	Density			
0	1 1	1/4 th of the array	00000h-3FFFFh (A19 = A18 = 0)	256K x 16	4M			
0	1 0	1/2 th of the array	00000h-7FFFFh (A19 = 0)	512K x 16	8M			
0	0 1	3/4 th of the array	00000h-BFFFFh (A19:A18 not equal to 1 1)	768K x 16	12M			
1	1 1	1/4 th of the array	C0000h-FFFFFh (A19 = A18= 1)	256K x 16	4M			
1	1 0	1/2 th of the array	80000h-FFFFFh (A19 = 1)	512K x 16	8M			
1	0 1	3/4 th of the array	40000h-FFFFFh (A19:A18 not equal to 0 0)	768K x 16	12M			
	Reduced Memory Size Mode (A3 = 1, A4 = 1)							
0	1 1	1/4 th of the array	00000h-3FFFFh (A19 = A18 = 0)	256K x 16	4M			
0	1 0	1/2 th of the array	00000h-7FFFFh (A19 = 0)	512K x 16	8M			
0	0 1	3/4 th of the array	00000h-BFFFFh (A19:A18 not equal to 1 1)	768K x 16	12M			
0	0 0	Full array	00000h-FFFFFh (Default)	1M x 16	16M			
1	1 1	1/4 th of the array	C0000h-FFFFFh (A19 = A18 = 1)	256K x 16	4M			
1	1 0	1/2 th of the array	80000h-FFFFFh (A19 = 1)	512K x 16	8M			
1	0 1	3/4 th of the array	40000h-FFFFFh (A19:A18 not equal to 0 0)	768K x 16	12M			
1	0 0	Full array	00000h-FFFFFh (Default)	1M x 16	16M			

Publication Date: Jul. 2007 Revision: 1.0 5/15

Power-up Characteristics

The initialization sequence is shown in the figure below. Chip Select (\overline{CE}) should be HIGH for at least 200 μs after V_{CC} has reached a stable value. No access must be attempted during this period of 200 μs . The state of \overline{ZZ} has to be high (H) for the duration of power-up.

Parameter	Description	Min.	Тур.	Max.	Unit
Tpu	Chip Enable Low After Stable V _{CC}	200			μs

Publication Date: Jul. 2007 Revision: 1.0 6/15

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential.-0.2V to $V_{\rm CCMAX} + 0.3V$ DC Voltage Applied to Outputs in High Z State[8, 9, 10]......-0.2V to $V_{\rm CCMAX} + 0.3V$ DC Input Voltage[8, 9, 10].....-0.2V to $V_{\rm CCMAX} + 0.3V$ Output Current into Outputs (LOW)......20 mA

Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	> 200 mA

Operating Range

Range	Operating Temperature (T_A)	V _{CC}	
Industrial	−40°C to +85°C	1.7V to 1.95V	

DC Electrical Characteristics (Over the Operating Range) [8, 9, 10]

Parameter	Description	Test Conditions		Unit		
1 di dillictoi	Description	rest conditions	Min.	Typ.[4]	Max.	0
V_{CC}	Supply Voltage		1.7	1.8	1.95	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$ $V_{CC} = 1.7 \text{V to } 1.95 \text{V}$	V _{CC} -0.2			V
V _{OL}	Output LOW Voltage	I_{OL} = 0.1 mA V_{CC} =1.7V to 1.95V			0.2	V
V _{IH}	Input HIGH Voltage	$1.7V \leq V_{CC} \leq 1.95$	0.8* V _{CC}		V _{CC} +0.3	V
V_{IL}	Input LOW Voltage	V _{CC} = 1.7V to 1.95V	-0.2		0.2* V _{CC}	V
I_{IX}	Input Leakage Current	GND ≤V _{IN} ≤ V _{CC}	-1		+1	μΑ
l _{oz}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC}	-1		+1	μΑ
Icc	V _{CC} Operating Supply Current	$f = f_{MAX} = 1/t_{RC} \qquad \begin{array}{c} V_{CC} = V_{CCmax} \\ I_{OUT} = 0mA \\ CMOS \ levels \end{array}$		18	20	mA
		f = 1 MHz		3	5	mA
I _{SB1}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{split} &\text{CE} > \text{V}_{\text{CC}} - 0.2\text{V}, \\ &\text{V}_{\text{IN}} > \text{V}_{\text{CC}} - 0.2\text{V}, \text{V}_{\text{IN}} < 0.2\text{V}, \\ &\text{f} = \text{f}_{\text{MAX}} \text{ (Address and Data Only),} \\ &\text{f} = 0 (\overline{\text{OE}} \text{ , } \overline{\text{WE}} \text{ ,BHE} \text{ and } \overline{\text{BLE}} \text{),} \\ &\text{V}_{\text{CC}} = 1.95\text{V}, \overline{\text{ZZ}} \geq \text{V}_{\text{CC}} - 0.2\text{V} \end{split}$		55	70	μΑ
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs		55	70	μA	
I _{ZZ}	Deep Sleep Current	$ZZ \geq V_{CC} - 0.2V$ $V_{CC} = V_{CCMAX}, \overline{ZZ} \leq 0.2V,$ $\overline{CE} = HIGH \text{ or } \overline{BHE} \text{ and } \overline{BLE} = HIGH$			10	μΑ

Capacitance[11]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	TA = 25°C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

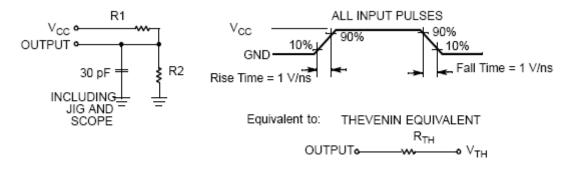
Notes:

 $8.V_{IL(MIN)} = -0.5V$ for pulse durations less than 20 ns.

 $9.V_{IH(Max)} = V_{CC} + 0.5V$ for pulse durations less than 20 ns.

10. Overshoot and undershoot specifications are characterized and are not 100% tested.

11. Tested initially and after any design or process changes that may affect these parameters.


Publication Date: Jul. 2007 Revision: 1.0 7/15

Thermal Resistance[11]

Parameter	Description	Test Conditions	BGA	Unit
ΘЈΑ	Thermal Resistance(Junction to Ambient)	Test conditions follow standard test	56	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)	methods and procedures for measuring thermal impedance, per EIA/ JESD51.	11	°C/W

AC Test Loads and Waveforms

Parameters	1.8V (V _{CC})	Unit
R1	14000	Ω
R2	14000	Ω
R _{TH}	7000	Ω
V _{TH}	0.9	V

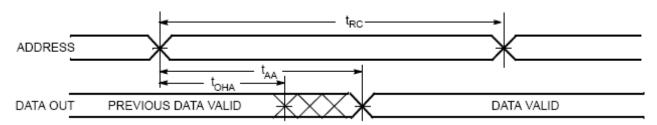
Publication Date: Jul. 2007

Revision: 1.0 8/15

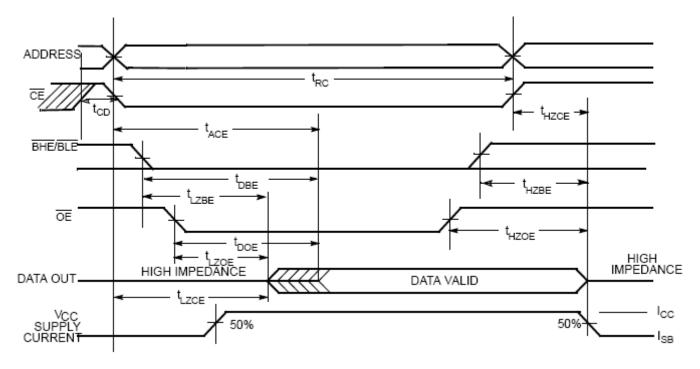
Switching Characteristics Over the Operating Range [12, 13, 14, 15, 18]

Parameter	Description	-	Unit		
	Description	Min.	Max.	Oilit	
Read Cycle			1	T	
t _{RC} [17]	Read Cycle Time	70	40000	ns	
t _{CD}	Chip Deselect Time CE, BLE / BHE High Pulse Time	15		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low Z [13, 14, 16]	5		ns	
t _{HZOE}	OE HIGH to High Z [13, 14, 16]		25	ns	
t _{LZCE}	CE LOW Low Z [13, 14, 16]	10		ns	
t _{HZCE}	CE HIGH to High Z [13, 14, 16]		25	ns	
t _{DBE}	BLE / BHE LOW to Data Valid		70	ns	
t _{LZBE}	BLE / BHE LOW to Low Z[13, 14, 16]	5		ns	
t _{HZBE}	BLE / BHE HIGH to High Z[13, 14, 16]		25	ns	
Write Cycle[15]	T		1	I	
t _{wc}	Write Cycle Time	70	40000	ns	
tsce	CE LOW to Write End	60		ns	
t_{AW}	Chip Deselect Time $\overline{\sf CE}$, $\overline{\sf BLE}$ / $\overline{\sf BHE}$ High Pulse Time	15		ns	
t _{HA}	Address Hold from Write End	60		ns	
t _{SA}	Address Set-Up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	0		ns	
t_{BW}	BLE / BHE LOW to Write End	50		ns	
t _{SD}	Data Set-Up to Write End	60		ns	
t _{HD}	Data Hold from Write End	25		ns	
t _{HZWE}	WE LOW to High-Z[13, 14, 16]	0	25	ns	
t _{LZWE}	WE HIGH to Low-Z[13, 14, 16]	10		ns	

Notes


- 12. Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC}/2, input pulse levels of 0V to V_{CC}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
- 13. At any given temperature and voltage conditions t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , t_{HZDE} is less than t_{LZDE} , and t_{HZWE} for any given device. All low-Z parameters will be measured with a load capacitance of 30 pF (1.8V).
- 14. thzoe, thzoe, thzee, and thzwe transitions are measured when the outputs enter a high-impedance state.
- 15. The internal Write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.
- 16. High-Z and Low-Z parameters are characterized and are not 100% tested.
- 17. If invalid address signals shorter than min. t_{RC} are continuously repeated for 40 μ s, the device needs a normal read timing (t_{RC}) or needs to enter standby state at least once in every 40 μ s.
- 18. In order to achieve 70 ns performance, the read access must be $\overline{\text{CE}}$ controlled. That is, the addresses must be stable prior to $\overline{\text{CE}}$ going active.

Publication Date: Jul. 2007 Revision: 1.0 9/15



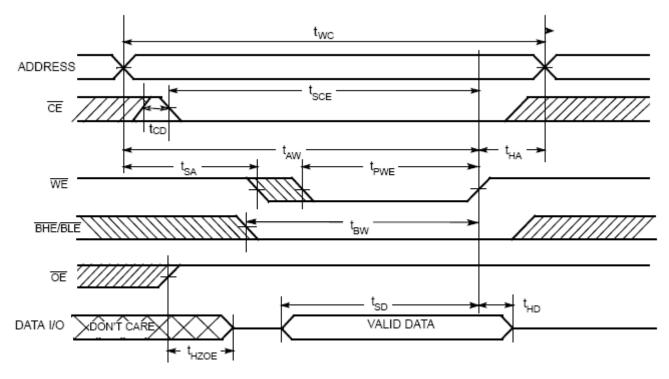
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)[20, 21]

Read Cycle 2 (OE Controlled)[19, 21]

Notes:

19.Whenever \overline{CE} , $\overline{BHE}/\overline{BLE}$ are taken inactive, they must remain inactive for a minimum of 15 ns.

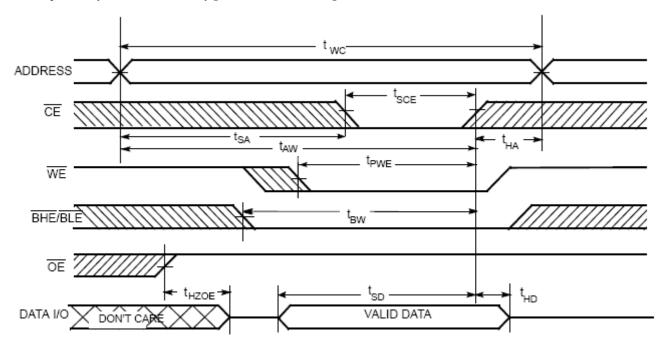

20.Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.

21. WE is HIGH for Read Cycle.

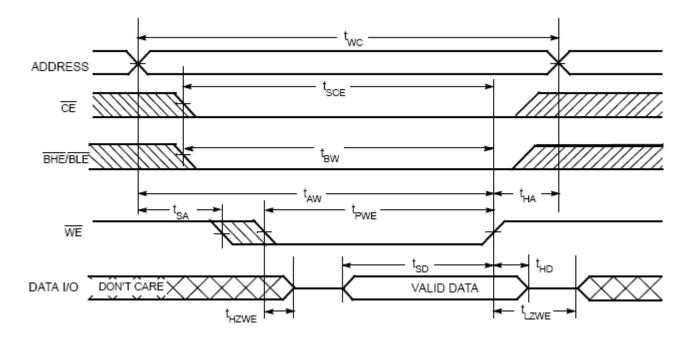
Switching Waveforms (continued)

Write Cycle 1 (WE Controlled) [15, 16, 19, 22, 23]

Notes:

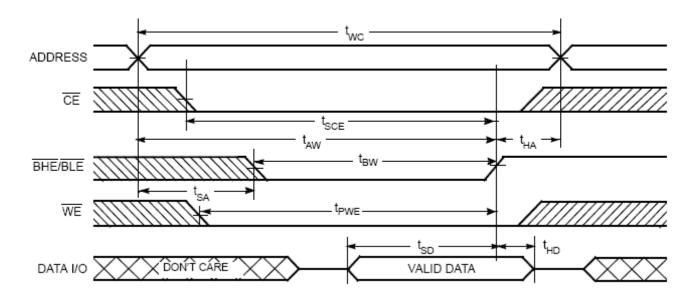

22.Data I/O is high-impedance if $\overline{OE} \geq V_{IH}$.

23. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.


Publication Date: Jul. 2007 Revision: 1.0 11/15

Write Cycle 2 (CE Controlled) [15, 16, 19, 22, 23]

Write Cycle 3 (WE Controlled, OE LOW)[19, 23]



Publication Date: Jul. 2007 Revision: 1.0 12/15

Switching Waveforms (continued)

Write Cycle 4 (BHE/BLE Controlled, OE LOW)[15, 19, 22, 23]

Truth Table[24, 25]

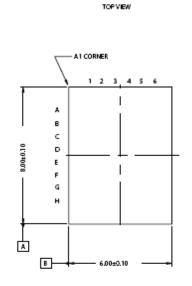
ZZ	CE	WE	ŌE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Н	X	Х	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
Н	Х	Х	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
Н	L	Χ	Χ	Н	Η	High Z	Deselect/Power-down	Standby (I _{SB})
Н	L	Ι	L	L	L	Data Out (I/O ₀ -I/O ₁₅)	Read	Active (I _{CC})
Н	L	Н	L	Н	L	Data Out (I/O ₀ -I/O ₇); I/O ₈ -I/O ₁₅ In High Z	Read	Active (I _{CC})
Н	L	Н	L	L	Н	Data Out (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ In High Z	Read	Active (I _{CC})
Н	L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
Н	L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
Н	L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
Н	L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write (Upper Byte and Lower Byte	Active (I _{CC})
Н	L	L	Х	Н	L	Data In (I/O ₀ -I/O ₇); I/O ₈ -I/O ₁₅ In High Z	Write (Lower Byte Only)	Active (I _{CC})
Н	L	L	Х	L	Н	Data In (I/O ₈ -I/O ₁₅); I/O ₀ -I/O ₇ In High Z	Write (Upper Byte Only)	Active (I _{CC})
L	Н	Х	Х	Н	Н	Data In (A ₀ -A ₄)	Write (Variable Address Mode Register)	Active (I _{CC})
L	Н	Χ	Χ	Х	Χ	High Z	Deep Power-down/PAR	Deep Sleep (I _{ZZ})/Stand by

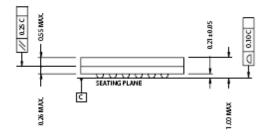
Notes:

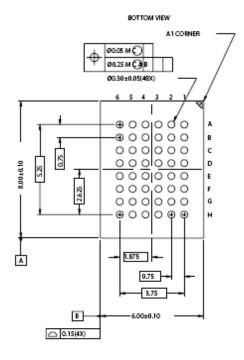
24.H = Logic HIGH, L = Logic LOW, X = Don't Care.

25. During \overline{ZZ} = L and \overline{CE} = H, Mode depends on how the VAR is set up either in PAR or Deep Sleep Modes.

Publication Date: Jul. 2007 Revision: 1.0 13/15




Ordering Information


Speed (ns)	Ordering Code	Package Type	Operating Range
70	M24D16161ZA-70BIG	48-ball Fine Pitch VFBGA (6 mm × 8 mm × 1 mm) Lead-Free	Industrial

Package Diagram

48-Lead VFBGA (6 x 8 x 1 mm)

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.

> Publication Date: Jul. 2007 Revision: 1.0